SYNTHESIS OF ¹³C=O-LABELLED TERTIARY ALKANOIC ACIDS BY THE KOCH-HAAF-REACTION*

Heinz Langhals, Ingrid Mergelsberg and Christoph Rüchardt,

Chemisches Laboratorium, Universität Freiburg, Albertstr. 21, D-7800 Freiburg

<u>Summary</u>: Good yields of tertiary alkanoic acids are obtained from the Koch-Haaf-synthesis even when only stoichiometric amounts of carbinol and HCOOH are used. This offers a new approach to ¹³CO-labelled tertiary alkanoic acids. -An excess of HCOOH is generally used in the Koch-Haaf-synthesis¹⁾ of carboxylic acids from carbinols and HCOOH in conc. H_2SO_4 .

ROH + HCOOH
$$\xrightarrow{H_2SO_4}$$
 R-COOH + H₂O

For this reason this reaction has not been previously used for the synthesis of 13 CO-labelled acids. Because 13 CO-labelled 1-adamantane carboxylic acid was required for related work²⁾ we have developed a variation of the Koch-Haaf-reaction using only a stoichiometric amount of HCOOH: 2.0 g (13.2 mmol) 1-hydroxyadamantane are mixed with 0.61 g (13.2 mmol) HCOOH (99%) and added with stirring to 23.2 g conc. H₂SO₄ at 10^oC. Stirring is continued for 2h and the mixture is then kept at 10^oC for an additional 27h without stirring, before it is added to 150 g crushed ice. The precipitated acid is purified in the usual way³⁾. Yield: 2.0 g (84.4%). The lit. procedure using ROH:HCOOH in the molar ratio 1:12 yields 96%. Even when 1 mol hydroxy-adamantane is reacted with only 0.7 mol HCOOH a 51% yield is obtained. The 13 CO-labelled acid was also successfully prepared by this procedure using

н¹³соон²⁾.

The success of the reaction is somewhat dependent on the rate of stirring⁴⁾ and is illustrated with the examples listed in Table 1.

ROH	stirring rate ^{a)}	т ° _C	reagent ratio ^{b)}	yield %	RCOOH ^{C)}
2-methyl-	slow	25-30	1:1:24	66	1-methylcyclo-
cyclohexanol	fast	15-20	1:1:24	44	hexanecarboxylic acid ⁵⁾
1-pentanol	medium	20-25	1:1:10	46	2,2-dimethyl- butyric acid ^{1a)}
1-hydroxy-	fast	10	1:1:24	84	1-adamantane-
adamantane	fast	10	1:1:12	80	carboxylic acid ³⁾
	fast	10	1:0.7:18	51	
1-adamanty1- methanol	fast	-15	1:1:24	28	3-homoadamantane- carboxylic acid ⁶⁾

Table 1 Koch-Haaf Synthesis of Tertiary Alkanoic Acids.

a) slow: 200, medium: 500, fast: 1200 revs. per minute.

b) molal ratio ROH: HCOOH: H_SOA

c) Lit. refers to publications, where these acids have been prepared using excess HCOOH.

*) Dedicated to Prof.Dr.Siegfried Hünig on the occasion of his 60th birthday

References:

- 1a) H.Koch and W.Haaf, Liebigs Ann.Chem. 618, 251 (1958);
- b) H.Hogeveen, Advances in Physical Organic Chemistry (V.Gold Editor)
 Vol. 10, p.29, Academic Press, London-New York 1973.
- c) L.I.Krimen and D.J.Cota, Org.Reactions 17, 213 (1969).
- H.Langhals, I.Mergelsberg, C.Rüchardt and U.Burger, Chem.Ber., manuscript in preparation.
- 3) H.Stetter, M.Schwarz and A.Hirschhorn, Chem.Ber. <u>92</u>, 1629 (1951).
- 4) W.Haaf, Chem.Ber. 99, 1149 (1966).
- 5) W.Haaf, Org.Synthesis V, 739 (1973).
- 6) C.Rüchardt and H.Langhals, Chem.Ber. 107, 1253 (1974).

(Received in Germany 2 April 1981)